Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration.

نویسندگان

  • Ju-Ha Song
  • Hyoun-Ee Kim
  • Hae-Won Kim
چکیده

Electrospinning is regarded as a facile tool to generate biomaterials into a nanofibrous structure. Herein a nanofibrous web constituted of collagen and hydroxyapatite (HA) was produced from their co-precipitated nanocomposite solution by using the electrospinning method. The co-precipitated sol was freeze-dried and the dried product was dissolved in an organic solvent for the electrospinning. The electrospun web showed a well-developed nanofibrous structure with HA contents of up to 20 wt%. The internal structure of the collagen-20 wt%HA nanofiber revealed highly elongated apatite nanocrystallines precipitated within the collagen matrix. However, above the HA content of 30 wt% the nanofibrous structure could not be preserved due to the formation of beads. The MC3T3-E1 osteoblastic cells were shown to adhere and grow actively on the collagen-HA nanofibrous web. The alkaline phosphatase (ALP) activity expressed by the cells on the collagen-20 wt%HA nanofiber was lower at day 7, but was higher at day 14 than that on the pure collagen nanofiber. Based on the study, the newly-developed collagen-HA nanofiber may be useful as a cell supporting substrate in bone regeneration area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apatite-coated collagen sponge for the delivery of bone morphogenetic protein-2 in rabbit posterolateral lumbar fusion.

Bone morphogenetic proteins (BMPs) need an effective delivery system for efficient bone regeneration. In this study, we evaluated the efficiency of an apatite-coated collagen sponge for the long-term delivery of BMP-2 in a rabbit model of lumbar posterolateral fusion. A total of 15 rabbits, divided into three groups, underwent posterolateral lumbar fusion. The first group (control group) receiv...

متن کامل

Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application

Objective(s): Hardystonite (HT) is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Ma...

متن کامل

In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration.

Electrospun chitosan membranes have been investigated for guided bone regeneration but are susceptible to swelling, dissolution, and loss of biomimetic nanofiber structure due to residual acid salts. A novel process was investigated for acidic salt removal from chitosan electrospun in 70% trifluoroacetic acid (TFA) by treating with triethylamine (TEA)/acetone and di-tert-butyl dicarbonate (tBOC...

متن کامل

Bio-inspired Nanocomposite Fibrous Scaffolds for Hard Tissue Regenerative Medicine

Taesik Chae, Heejae Yang, Frank Ko, Tom Troczynski. Materials Engineering Department, University of British Columbia, Vancouver, BC Canada V6T 1Z4 Statement of Purpose: Aging of population increases the need for human organ/tissue repairs. Autografts supply, however, has limitation, and allografts may cause the risk of disease transmission and anti-immunization response. One of the alternatives...

متن کامل

Evaluation of Influence of Zeolite/Collagen Nanocomposite (ZC) and Hydroxyapatite (HA) on Bone Healing: A Study on Rabbits

Bone healing is still a great challenge in orthopedic surgery and clinical practice. There is a dearth of research investigating the effect of Zeolite/Collagen (ZC) nanocomposite on bone regeneration. In the present study, a critical segmental defect of the rabbit femur was repaired using defects in femurs repaired by ZC nanocomposite, and the effects were examined histologically. In total, 45 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of materials science. Materials in medicine

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2008